Regression with Missing Data, a Comparison Study of Techniques
Based on Random Forests

Irving Gémez-Méndez® and Emilien Joly

aCentro de Investigacién en Matematicas, AC (CIMAT); PCentro de Investigacién en
Matemadticas, AC (CIMAT)

ARTICLE HISTORY
Compiled August 13, 2022

ABSTRACT

In this paper we present the practical benefits of a new random forest algorithm
to deal with missing values in the sample. The purpose of this work is to compare
the different solutions to deal with missing values using random forests and describe
the new algorithm performance as well as its algorithmic complexity. A variety of
data-missing mechanisms (MCAR, MAR, MNAR) are considered and simulated. We
study the quadratic errors and the bias of our algorithm and compare it to the most
popular missing values random forests algorithms in the literature. In particular, we
compare those techniques for both a regression and prediction purpose. This work
follows the paper of [1] on the consistency of this new algorithm.

KEYWORDS
Missing values, Random forests, Non-parametric regression, Prediction with
missing values

1. General introduction

1.1. Random forests with missing values: a contemporary challenge

Random forests and recursive trees are widely used in applied statistics and computer
science. The popularity of recursive trees relies on several factors: their easy inter-
pretability, the fact that they can be used for both regression and classification tasks,
the small number of hyper-parameters to be tuned and finally, their non-parametric
nature that allows their use to infer arbitrarily complex relations between the input
and the output space. A random forest combines several randomized trees, improving
the prediction accuracy at a cost of a slight lost in interpretation. This technique is
easily parallelizable which has made it one of the most popular tools for handling
high dimensional data sets. It has been successfully involved in various practical prob-
lems, including chemioinformatics, ecology, 3D object recognition, bioinformatics and
econometrics. [2] present a detailed list of applications as well as a review on random
forests. In the present work we have focused on the ability of random forests to deal
with missing values.

Contact Author: Irving Gémez-Méndez. Email: irving.gomezQcimat.mx



Three groups of algorithms. Approaches to handle missing values regarding the
use of random forests could be classified in three groups. In the first group, we classify
the algorithms that impute the missing values without using ad-hoc techniques, like
k nearest neighbor imputation (knn-imputation) [3] or multiple imputation chained
equations (MICE) [4], for example. Once performed this imputation step, the regular
random forest algorithm is implemented on the completed data set. In this paper,
we will not pay much attention to this first group of algorithms as the imputation
step is unrelated with the later use of the random forest algorithm which is finally,
only treated as a black box. The second group is composed of the algorithms that use
the random forest structure (directly or through some extra method like proximity
matrices) to impute the missing values. They typically use iterated updates of the
imputations to refine them. We decided to store the methods proposed by [5-7] in this
group. The third group consists in built-in methodologies that include the incomplete
observations directly in the construction of the recursive trees (without imputation
steps) to compute the random forest’s estimation. Are included in this group: surrogate
splits [8], missing incorporated in attributes (MIA) [9] or the algorithm proposed by
[1], which is the main focus of this paper.

1.2. Literature on missing values treatment with random forests

Handling missing values through different algorithms has received much attention
recently with several simulation studies comparing the performance of distinct methods
[10-14]. In this paper, we propose a comparison study of techniques of the last two
groups since they appear to be the most used and precise in practice. Of special focus
for this present paper is the study of the practical performance of the new approach
presented in [1], which has the advantage to be consistent under an MCAR mechanism
and a generalized additive model.

The idea of handling missing values with random forests algorithms is not new
whether it be for a “filling the gaps” task, a learning or a prediction task with corrupted
data. In this section, we describe the current state-of-the-art in the study of this
problem. The study developed by [10] is one of the first to present a result on missing
values using recursive trees. This work compares the error rate between surrogate
splits in a single decision tree, and the imputation procedure presented by [15,16].
Two data sets are considered in the study, given by the so-called Waveform data
set (presented by [8]) and the Prima Indian data sets (available at the UCI machine
learning repository). The percentage of missing values varies between 10% and 45% for
the first data set, where the missing values are introduced accordingly to an MCAR
mechanism. On the other hand, 10% of the observations present missing values in the
second data set. In [10] the author concludes that the imputation procedure yields
significantly less missclassification error rate.

The work of [11] presents a comparison of classification methods like support vector
machines, knn-imputation and the decision tree method C4.5 [17] applied to missing
data, and imputation algorithms, including single imputation and MICE. In total 15
data sets are considered, inducing missing values with up to 50% of the observations
per variable being missing. The authors conclude that the application of MICE leads
to better results in most of the instances.

In [12] the authors compare surrogate splits introduced in the conditional inference
forests [18] with knn-imputation, with no clear advantage for either of the methods.
This study considers classification and regression problems with three different cor-



relation structures and seven schemes for missing values. However, the percentage of
missing values is kept constant.

In [13] there is presented a comparison study using trees built with the CART
criterion, conditional inference trees and their corresponding random forests, focusing
on surrogate splits to handle missing values and the use of MICE to impute missing
values. The authors consider 12 real life data sets, half of them for regression and the
other half for classification, 8 of the data sets already present missing values while in the
rest 4 data sets missing values are induced. Arguing that [12] found similar results for
MCAR and MAR mechanisms, the missing values are solely introduced according to an
MCAR missing-data mechanism, considering missing rates between 0% (benchmark)
to 40%. Their results do not show a clear improvement by using multiple imputation,
with MICE even producing inferior results when missing values are limited in number
and are not arbitrary spread across the data. The results also show a similar result
between trees constructed with the CART criterion and conditional inference trees.

The simulation developed by [14] studies the performance of several methods to han-
dle missing values in regression tasks. In this study, three different regression functions
are considered, one of them being linear, one quadratic and the third being the so-
called “friedmanl” [19]. They consider the MCAR mechanism and censoring, inducing
up to 20% of observations with missing values in the first variable. The authors com-
pare conditional inference trees, trees and random forests based on the CART criterion
and XGBoost [20]. The algorithms to handle missing values include MIA, surrogate
splits for both trees built with the CART criterion and conditional inference trees,
block propagation (only implemented in XGBoost), surrogate splits, mean-imputation
and EM imputation [21]. The authors clearly favors the usage of MIA for tree-based
methods, while block propagation could also be a good method.

In [5] an algorithm based on random forests to impute the missing values is pro-
posed making use of the observed values and the proximity matrix. [6] presents an
improvement which instead of considering only the observed values in the imputation
procedure, it considers nearest neighbors for continuous variables and all the observa-
tions for categorical variables. [6] compares these two approaches and knn-imputation
introducing missing values completely at random in the Spam data set and considering
missing data rates from 5% to 60%, concluding that the proposed approach outper-
forms knn-imputation and the previous method proposed by [5]. However, the same
author comments that other missing-data mechanisms should be considered.

The missForest algorithm is introduced in [7], this algorithm imputes the missing
values iteratively considering it as a regression problem in which the imputation of
the current variable is done using all the other variables. In the simulation study
presented, they consider classification and regression problems in 7 different data sets
where 10%, 20% or 30% of the values are removed completely at random, concluding
that missForest outperforms knn-imputation and MICE. Furthermore, the authors
ensure that the full potential of missForest is deployed when data includes interactions
or non-linear relations between variables of unequal scales and different types.

In this paper, we compare the performance of most of these techniques with a new
proposal taken from [1] when we let the percentage of missing values to vary from 0%
to 95%.

The rest of the paper is organized as follows. In Section 2, we give the general back-
ground on random forests algorithms. We formally introduce the CART criterion and
the missing-data mechanisms. In Section 3, we describe the proposal to build recur-
sive trees including the missing values and we give upper bounds on its computational
complexity. In Section 4, we describe the other methods that we use as benchmark in



the simulation study explained in detail in Section 4.2 and Section 4.3. In Section 5,
we present and describe the results. Finally, Section 6 presents the conclusions.

2. Settling the concepts

2.1. Random forests built upon the CART criterion

Throughout this article, we assume to have access to a training data set D, =
(Xi,Yi)i=1,..n where the response variables Y; are real-valued and the input variables
X; belong to some space X C RP. The objective is to use the data D,, to construct a
learning model, also called learner, predictor or estimator, m,, : X — R that estimates
the regression function m(x) = E[Y|X = x].

The random forest is made of a set of regression trees that are later aggregated
all together with a simple mean idea. Each branch of the tree will be random (in its
construction process) and represents a partition of the input space in smaller regions.
Moving along the path of the tree corresponds to a choice of one of the possible regions.
To construct this partition of the input space, the trees are built in a recursive way
(hence the name of recursive trees). The root of the tree corresponds to the whole input
space X. Then, recursively, a region is chosen and is split into two smaller regions.
This process is continued until some stopping rule is applied. At each step of the tree
construction, the partition performed over a cell (or equivalently its corresponding
node) is determined by maximizing some split-criterion. The present work focuses in
the so-called CART split criterion. We first introduce some important notations.

A denotes a general node (or cell).
e N(A) holds for the number of points in A.

e The notation d = (h, z) denotes a cut in A, where
h is a direction, h € {1,...,p}, and
z is the position of the cut in the hth direction, between the limits of A.
e (C4 is the set of all possible cuts in node A.
e A cell A is split into two cells denoted Ay, = {x € A : x" < 2} and Ap = {x €
A x> )
e Y4 (resp. Ya,, Ya,) is the empirical mean of the response variable Y; for the

indexes such that X; belongs to the cell A (resp. Az, AR).

Then, the CART split criterion for a generic cell A is defined as

S _
Ln(A,d) :m Z (Y; — YA)2 Tx.ea
i=1
1 " _ _ 2
— WZ(}/i—YAL]].XEh)<Z—YAR]1XEh)ZZ) I]-Xi,GA (1)
i=1

with the convention 0/0 = 0.

As mentioned above, a random forest is a predictor consisting of M (> 1) randomized
trees. The randomization is introduced in two different parts of the tree construction.
Prior to the construction of each tree, a, observations are extracted at random with
(or without) replacement from the learning data set D,,. Only these a,, observations
are taken into account in the tree construction. Then, at each cell a split (or cut) is
performed by maximizing the split criterion over a number mtry of directions h, chosen



uniformly at random. The tree construction is stopped when each final node contains
less or equal than nodesize points. Hence, the parameters of this algorithm are:

M > 1, which is the number of trees in the forest.

e a, € {1,...,n}, which is the number of observations in each tree.

e mtry € {1,...,p}, which is the number of directions (features) chosen, candidates
to be split. We denote by My, the features selected in each step.

e nodesize € {1,...,a,}, which is the maximum number of observations for a

node to be a final cell.

The randomization introduced in the trees (independent from the original source
of randomness in the sample D,,) is represented in a symbolic random variable ©. To
each tree — randomized with the random variable ©y — there is associated a predicted
value at a query point x, denoted as my(x;©). The different trees are constructed
by the same procedure but with independent randomization, so the random variables
O1,...,0 are i.i.d. with common law ©. In our choice of the construction rules, ©
consists in the observations selected for the tree and the candidate variables to split
at each step. Finally, the kth tree’s estimation at point x is defined as

}/7/:[]' XiGAn(x;Gk)

m,(x; O) = N (An(x;0%))

1€1n 0,

where Z,, o, is the set of the a,, observations selected prior to the construction of the
kth tree, A, (x;0x) is the unique final cell that contains x, and N (A, (x;0Ox)) is the
number of observations which belong to the cell A, (x;©y). The average of the trees
forms the random forest’s estimation given by

M
1
marn(X;01,...,00) = i Zmn(x; Op).
k=1

It is known from the work of [22] that the random forest does not overfit when
M tends to infinity. This makes the parameter M only restricted by computational
power.

2.2. Missing-data mechanisms

The concept of missing-data mechanism (introduced by [23]) establishes the relation-
ship between missingness and data. Before introducing the missing-data mechanisms,
let us define a new variable, called the missing-data indicator

< h <mn.
0 otherwise , Ishsp

M®) — { 1 if X is missing
We assume throughout this work that the response Y has no missing values which
makes unnecessary to define an indicator of missing variable for Y. Then, the mech-
anisms are fully characterized by the information of the conditional distribution of
M® given (X,Y). There are three possible missing-data mechanisms.



Missing Completely at Random (MCAR). We say that data are MCAR if M)
is independent from (X,Y"). In other words, under the MCAR assumption, the coor-
dinates X" have some probability to be missing in the sample and this probability
does not depend on the value of X nor the response variable Y.

Missing at Random (MAR). Data are say to be MAR if the probability of miss-
ingness is related to some measured variables but not to the missing values.

Missing Not at Random (MNAR). If the probability of missingness depends on
missing values we say that the data are MNAR.

3. A new approach

It is of special interest to study the performance of the algorithm presented by [1]
who have proven its consistency for an MCAR mechanism and a generalized additive
model, being one of the first results on the consistency of random forests with missing
values. This algorithm adapts the original CART criterion to manage missing data
directly in the construction of the regression trees. We now recall this proposal.

3.1. Description of the algorithm

Assume for now that we have a partition of the input space. When there are missing
values in the data set, there is uncertainty on the region to which each observation be-
longs. Thus, the original CART criterion (see Equation (1)) becomes intractable since
the quantities N(A), N(AL), N(Ar), Ya, Ya,, Ya,, Ix,ea, I xoo_, and 1o can
not be computed. The proposed approach keeps the form of the CART criterion and
makes use of adapted imputations for the intractable parts which allows the compu-
tation of a modified version of the CART criterion. Unlike most of the imputation
techniques, the imputation step is not performed independently of the evaluation of
the CART criterion but is integrated to its later optimization. While a cut is selected
by maximizing the original CART criterion, now a couple (cut, imputation) is cho-
sen at each split in the creation of the random tree. The idea is that, for a cut, the
observations with missing values are assigned to the child node that maximizes this
modified CART criterion. At the end, the missing observations will belong to a final
node of the tree, which can give an “imputation” of the missing values as a region
of the input space, which in turn would be translated into a “cloud” of possible re-
gions for the missing values when the random forest is considered. For sake of clarity
the proposal has been divided in two parts, Algorithm 1 describes the steps for the
construction of the random forest with missing entries and Algorithm 2 establishes
the steps to find the best cut and assignation of missing data. At the beginning of
the construction of each tree it is necessary to initialize the list of current not-final
cells P = {X} as well as the induced partitions of the input variables and the target
variable Xp = {(Xy,...,X,,)} and Yp = {(Y1,...,Y,)}, respectively. Along with the
initialization of these sets, the final partition of the input space Py = {} and the cor-
responding partitions of the input variables Xy = {} and the target variable Yy = {}
are initialized. When a cell A satisfies the criteria to be a final cell, it is removed from
P and added to Py, the input variables X4 and the target variables 4 belonging to
A are also removed from Xp and Vp, and added to X; and )y, respectively. In the



h)

sequel, we denote as N (Ebs (A) the number of points belonging to A, whose value in the

direction h has been observed and Nf(:i)ss(A) the number of observations assigned to

cell A whose value in the direction h is missing.

Algorithm 1 Random forest with assignation of missing entries.

Input: Training sample D,,, number of trees M > 1, mtrye {1,...,p}, a, € {1,...,n},
nodesizee {1,...,a,}.
Output: Random forest mps .
1: fori=1,...,M do
2 Select a,, points uniformly in D,,.
3 Initialize P, Xp, Vp, P¢, Xr and Vy.
4 while P # @ do
5: Let A, X4, Va be the first elements of P, Xp and Vp, resp.
6 Set N(A) the number of points which belong or were assigned to A.
7 if N(A) <nodesize then
8 Remove A, X4 and V4 from P, Xp and Vp, and add them to Py, Xy and V.
9

: else

10: for j=1,...,pdo

11: Compute Négg (A).

12: end for

13: Let hops be the features h such that N(EQ (4) > 1.

14: if hops = @ then

15: Remove A, X4 and Y4 from P, Xp and Vp, and add them to Py, Xy and
Vy.

16: else

17: Set Mops = |hobs|-

18: if myps <mtry then

19: Set Miry = hobs-

20: else

21: Select uniformly, without replacement, a subset M., C hops of cardinal-
ity mtry.

22: end if

23: Apply Algorithm 2 on cell A along the features in M,,,.

24: Call Ay, and Ag the two resulting cells.

25: Remove A, X4 and V4 from P, Xp and Vp.

26: Add Ayp, Ar, Xa,, Xap, Ya, and Ya, to P, Xp and Vp.

27: end if

28: end if

29: end while

30: end for




Algorithm 2 Best cut and assignation.
Input: Cell A, (X4,Ya4), Miry.

Output: Best cut and assignation (2, ).

1: Set maxrcarr < 0
2: for h € My, do

3: Compute the midpoint of two consecutive values of X" between those points X € A,
let be ZXL) the set of these midpoints.

4: Let be ngh) the set with all the possible assignation for the missing values in h.

5: for z € ZXL) do

6: for w € WXL) do

7 Let c4 be the CART-criterion computed with the cut (h, z) and the assignation
w.

8: if ¢y > maxcarr then

9: MATCART < CA-

10: (2,0) + (z,w)

11: end if

12: end for

13: end for

14: end for

3.2. Complexity of the algorithm

Several algorithms do not only compute the random forest estimators but many other
by-products, like the proximity matrix or measures of feature importance. More im-
portantly, they are not programmed with the same quality, some take advantage of
parallel computation, while others do not, which makes challenging to compare directly
the methods from a perspective of computational resources or time of execution, and
might not reflect the advantages of some algorithms. Due to all this variability in the
computation of the algorithms, we have considered as an alternative to study their
algorithmic complexity. Thus, in this section we calculate the complexity of the algo-
rithm. With an efficient use of computational resources, the use of parallel computing,
and a high-quality code in a low-level programming language, it is not a prohibited
algorithm, but a technique that might be used for real applications.

At first sight, it looks that the number of possible assignations defined by WXL)

iss(A) missing
observations. This would lead to exponential complexity in the number of calculations
of the CART criterion and then to an intractable algorithm. However, the number
of possible candidate assignations to maximize the CART criterion is lower than this
quantity. To see this, fix a cell A and a cut (h,z) in A, to keep a simple notation let
YL,ObS (resp. Yprs) be the mean of the response variable for the points belonging to the
left (right) node and observed in the direction h. Suppose without lost of generality that
Y7 obs < YR,obs and denote by imss = {1,..., N} the set of indexes of the observations
assigned to the cell A whose direction h is missing, without lost of generality assume
that Y7 < --- < Yn. Because YL,obs < }73701,5 and maximizing the CART criterion
implies to make as different as possible the average of the target on the left node
from the average of the target on the right node, then observations i € i,,;ss with the

in Algorithm 2 are all the combinations for the assignations of the N (h)



lowest values Y; should be assigned to the left node and the observations i € imn;ss
with the largest values Y; should be assigned to the right node. Therefore, there exists
w € {1,...,N + 1} such that assigning Y3,...,Y,—1 € Ar and Y,,,..., YNy € Ag
maximizes the CART criterion. Hence, the set with all possible assignations ngh) has

a cardinality of Ngﬁl s(A) + 1 and there is only a linear number of assignations to be
considered. Now, we can calculate the complexity of the algorithm.

Let be Ocarr the number of operations needed to calculate the CART criterion
for a given cut (h, z) and assignation w of missing values. It makes sense to consider
the complexity of our algorithm with respect to Ocarr since every other random
forest algorithm that we compare to also makes a certain number of evaluation of the

CART criterion. Consider the Algorithm 2 and note that |Z£1h)\ = NW (A) — 1 and

obs
Wy h)\ =N® (A) + 1. Thus, the number of necessary operations to get the best cut

mzss
and assignation is

ST 120w 10carr
heEMry

On the other hand, denote by P,s the set of non-final nodes of a tree, it is clear
that |Pn¢| < n — 1, where the equality holds when each final cell contains just one
observation. Now, let be Oy.¢e the number of operations needed to build a regression
tree with our approach, then

Oee= . > 1ZPNW Y 10carr
AePnf hEMtry

=2 (No(z’;ls 1) (Nr(:i)ss(A)_'_l) Ocarr
AEP, s he Myry,
ST 3T (N(A) - 1) (N(A) +1) Ocarr

AEP,; hEMyry

< mtry X n® X OcART.

3.3. On simplifications of the algorithm

In this section we discuss a remark that leads to further simplification of our algorithm
in order to reach an algorithmic complexity of the same order than MIA. Recall from
Section 3.2 that the algorithmic complexity of our proposal is of the order O(n?)
times the calculation required to compute one single CART criterion and that MIA
algorithm (in O(n?)) is quicker by a linear factor.

From the CART criterion written in Equation (1), we see that the criterion is
convex with respect to the variable that counts the number of observations assigned
into Ay, see Figure 1 for a graphical representation of this fact. This simple remark
leads us to opt for a dichotomy strategy for the optimal assignation of the missing
variables. Indeed, at first step, we assign half of the missing variables to the left
(in Ar) and half to the right (in Ag). The corresponding assignation is then given
by a k = |N/2] (called pivot for the dichotomy) such that ¥ < --- < Y, € A
and Yiy1 < --- < Yy € Ap, assuming once again that YL,ObS < YR,obs without lost
of generality. Such configuration gives a CART criterion resumed (abusively) in the



notation CART' (k). We search for the optimal assignation through calculations of the
local gradient given by

VCART(k) = CART(k + 1) — CART (k).

If the value is positive (resp. negative), then the optimal k is bigger or equal (resp.
smaller or equal ) to [IN/2]. Say (for example), that VCART (k) > 0. Then, we place
the new pivot at the point £ = |3N/4] and compute VCART' (k). Once again, the
sign of the gradient tells us in which sub interval of [| N/2|, N] the optimal assignation
is. We, then repeat this simple searching procedure until ending with an interval
containing only two points. The biggest CART value of the two gives the optimal
assignation of our variables. This dichotomy procedure allows to consider only log(N)
computations of the local gradient and a simple comparison at the end. This allows
us to replace the complexity of the algorithm by

Otree < mtry x 2n%log(n) x Ocarr

which is comparable to the MIA algorithm complexity up to a logarithmic factor.
This optimization of the procedure is particularly important when the algorithm deals
with a very corrupted data set where the missing entries could represent a significant
proportion of the all data.

S0 L O
3 ./. .‘o‘
) — .
o / L JU
/° e
c L ]
2 /. e
L o ° N
R 4 N
o ©° /o .
E(: ° Ne
O ./ AN
[Te] ./ .\
N - 7 ®
o [ ] N
e L
AN
.
I T I I I I I
0 5 10 15 20 25 30

Position to split the ordered Y vector

Figure 1. CART criterion as a function of the position where we split Y7,..., Y.

4. Experimental details
Planning a computational study for machine learning algorithms is crucial to achieve

relevant results. However, this kind of studies do not hold an evident answer on how
they should be done. There are simply too many factors and questions to investigate

10



without a trivial answer: like the methods taken as benchmark, the metrics to compare
the algorithms and their estimators, the data sets to use, the mechanisms to introduce
missing values, the percentage of missingness, etc. Thus, for sake of clarity, in this
article we have limited the analysis to simulated data, which gives us several advantages
over real data sets. For example, we can compare the estimations directly with the
real regression function, analyzing the bias and the mean squared error (MSE). On
the other hand, to present a most exhaustive study, we consider many algorithms that
have been used in previous studies as a benchmark, allowing the comparison of both
simple approaches to handle missing data as well as more complicated state-of-the-art
algorithms. Moreover, we introduce the missing values considering not only one data-
missing mechanism, but several of them, and vary the ratio of missingness from a very
low percentage (5%) to a large percentage (95%).

We now present the details of the simulation study. For sake of clarity, we first
introduce the methods taken as benchmark, then present the parameters of the ran-
dom forest algorithm, and finally introduce the mechanisms considered to incorporate
missing values.

4.1. Benchmark methods

Many methods proposed in the literature to handle missing data using random forests
operate through imputation in a recursive way. They start by using the original training
data set D, to fill the blank spaces in a rough way. For example, using the median of
the observed values in the specific direction. We denote this new data set as D,, ;.

The imputed data set D, 1 is used to build a random forest. Then, some structures of
the forest are exploited, like the so-called proximity matrix, improving the imputation
and resulting in a new data set D,, o. The procedure continues by iterations until some
stopping rule is applied. These stopping rules trigger, for example, when the update in
imputed variables becomes negligible or when a fix number of iterations is achieved.
More formally, let us define

g [ X0 o
B X MM =1

where }/ig;) is the imputation of Xgh) at time £ > 1, and let X, , = (Xl(.}), ey ng?).
To properly introduce the methods considered in the simulation study, we need to
define the connectivity between two points in a tree and the proximity matrix of the
forest. Let Kg (X, X’) be 1 if and only if X and X’ belong to the same final cell in
the tree designed with D,, and the parameter ©. In such case we say that X and X’
are connected in the tree my,(-; ©). Finally, the proximity between X and X’ in the
random forest mps,(+;©1,...,0n), is defined as

M
Kyn(X, X)) = ZK@,“
k

Analogously, we define the proximity Kpe(7,j) between X; and X; at time ¢ (i.e.
using the data set D), ¢). We also define 1(h C {1,...,n} as the indexes where X"

miss

is missing, and iggi ={1,...,n}\ iﬁggss as the indexes where X is observed.

11



We consider three different approaches which impute missing values through ran-
dom forests. These methods correspond to the algorithms presented in [5-7]. We refer
to those as Breiman’s approach, Ishioka’s approach and missForest approach, respec-
tively. These algorithms impute the missing values through iterative improvements.
We also consider MIA, which is an algorithm that handle the missing values directly
in the construction of the trees, assigning all the missing values to the same cell.
As simple baselines we consider median-imputation of the missing values and listwise
deletion (i.e. removing the observations with missing values) before the construction
of the random forest.

4.1.1. With imputation

In this section, we describe the algorithms that belong to the iterative imputation
group that are included in the upcoming simulations.

(h)
JA+
of the observed values in X(")| where the weights are defined by the proximity matrix
of the previous random forest, that is

Breiman’s Approach. If X is a continuous variable, X , is the weighted mean

.. h
&) Ziei“gl KM,Z(ZJ)XE ) t>1

obs

i - ) ) . «(h

obs

On the other hand, if X" is a categorical variable, )Aighe)ﬂ is given by

~ />1
X arg max KMg(i,j)Il o, T J(h
A =S ,§> ; XM =x je lim)ss

obs

That is, )A(y? | is the class that maximizes the sum of the proximity considering the
observed values in the class.

Ishioka’s Approach. If X" is a continuous variable, ﬁghgﬂ is the weighted mean

of the k nearest neighbors, according to the proximity matrix, over all the values,
both imputed and observed. The k closest values are chosen to make more robust the
method and avoid values which are outliers.

.o (h
Z:iEneigh,C KM,@(ZaJ)Xz(',E)
X(h) i#j tz1

; — . . .(h
3t ZiEneighk KM,@(Zaj) ’ S 11(71233
i#]

For categorical variables, it is not necessary to see only the k closest values because
the outliers of X will have few attention. Meanwhile the proximity with missing values
should have more attention, especially when the missing rate is high. Hence, if X" is

(h)

. . S .
a categorical variable, X 041 18 given by

12



S(h) . £>1
Kt =gy Kooy
i#£]

MissForest. This algorithm treats the imputation as a regression problem by itself,
where the target variable is the variable with missing values. MissForest predicts the
missing values using a random forest trained on the observed parts of the data set.
More formally for an arbitrary variable X(") we can separate the data set into four
parts:

(h),

obs’

(h) .

Yimiss

e the observed parts of the variable X()| denoted as y

e the missing values of the variable X denoted as

(h)

e the variables other than X" and the observations whose indexes belong to i obs?

(h),

obs?

denoted by x
(h)

e the variables other than X" and the observations whose indexes belong to TN

(h)

miss”®

denoted by x

To begin, the original training data set D, is used to fill the blank spaces in a rough

way, for example, with the median of the observed values in the variable. Then, for
(h)

obs and predictors x™ then

obs’
(h)

miss

each variable X" a random forest is trained with target y
(h)

Yoniss are imputed with the prediction of x

the missing values using the random

forest.

4.1.2. Without imputation

Missing Incorporated in Attributes. The Missing Incorporated in Attributes
(MIA) consists in keeping all the missing values together when a split is performed.
That is, missing values are assigned together to the child node that maximizes the
CART criterion (or any other considered criterion). Thus, the splits with this ap-
proach assign the values according to one of the following rules:

o (XM < zand M® =1} versus {X® > 2},
o {XM < 2} versus {X" > 2z and M = 1},
o {M® =0} versus {M®" =1}

4.2. Description of the parameters

The regression function considered in this study is the so-called “friedmanl” [19],
which has been used in previous simulation studies [12,14,19,24,25], given by

2
m(x) = 10sin <7TX(1)X(2)> +20 (X(3) _ 0‘5> +10x@ 1 5x®).

Our simulation study is based on the previous work of [12], with the following char-
acteristics:

e We simulate X uniformly distributed on [0,1]° and introduce missing values in
XM XG) and X@ | considering 7 different missing-data mechanisms.

13



e For each missing-data mechanism we create 100 training data sets, each one with
200 observations.
o In X1 20% of the data is missing, in X®) the amount is 10%, and in X*) there
is 20% again.
e We also create a testing data set with 2000 observations without missing values.
This amount of data is to have an appropriate approximation to the mean
squared error (MSE)

Ex|p, [mara(X) — m(X)]?
and the bias
Ex|p, [mun(X) —m(X)].

Note that these expressions are conditioned on the training sample D,, and thus
they are random variables which take a different value for each one of the 100
training data sets.

e A random forest is built for each training data set and each missing-data mech-
anism as well as for the data sets without missing values (which are used as
benchmark).

e We use M = 100 trees, which has been seen by simulation to be sufficient to
stabilize the error in the case of the complete data sets.

For the rest of parameters we use the default values in the regression mode of
the R package randomForests.

e The parameter mtry is set to |p/3].

e We have sampled without replacement, so a,, is set to [0.632n].

e And nodesize is set to 5.

These parameters are the same for the median-imputation and MIA approaches.
For Breiman’s approach, Ishioka’s approach and missForest we initialize the algo-
rithms with the median-imputation and consider the same parameters as before for
the construction of the regression trees. The number of iterations is set to 10 and
random forests are built with 100 trees in each iteration, corresponding to the default
values of the package missForest in R. We now describe the missing-data mechanisms,
which are based on those presented by [12].

4.3. Missing-data mechanisms

Missing Completely at Random (MCAR). We select as many locations as de-
sired sampled out of the n observations and replace them by NA.

Missing at Random

The choice of the locations that are replaced by missing values in the “missing” variable
now depends on the value of a second variable, called the “determining” variable.
Therefore, the values of the “determining” variable now have influence on whether a

value in the “missing” variable is missing or not. For X(!) the “determining” variable
is X while X® is used as the “determining” variable for X®) and X®,

14



Creation of ranks (MAR1). The probability for a missing value in a certain loca-
tion in the “missing” variable is computed by dividing the rank of the location in the
“determining” variable by n(n + 1)/2. The locations for NA in the “missing” variable
are then sampled with the resulting probability vector.

Creation of two groups (MAR2). We divide the data set in two groups defined
by the “determining” variable. A value belongs to the first group if the value in the
“determining” variable is greater than or equal to the median of the “determining”
variable, otherwise it belongs to the second group. An observation has a missing value
with probability of 0.9 for the first group (0.1 for the second group) divided by the
number of members in the respective group. The locations for NA in the “missing”
variable are then sampled with the resulting probability vector.

Dexter truncation (MAR3). The observations with the biggest values in the “de-
termining” variable have the “missing” variable replaced by NA until the desired frac-
tion of NA has been achieved.

Symmetric truncation (M AR4). This method is similar to the previous one but
we replace by NA the values in the “missing” variable in the observations with the
biggest and the smallest values in the “determining” variable.

Missing depending on Y (DEPY). The missing values depend on the value of
the response, the probability is 0.1 for observations where Y > 13, otherwise it is 0.4.
The locations for NA in the “missing” variable are then sampled with the resulting
probability vector.

Missing Not at Random

Logit modelling (LOG). In this method the probability for NA no longer depends
on a single “determining” variable but in all the other variables. It is modeled as

5
logit (IP’ [MW - 1}) — 05+ 3> xX®
"

Therefore, the probability of missingness depends on variables with observed values
and variables with missing values.

Complete Observations

Additionally, we consider the data sets with no missing values as a benchmark, which
is denoted as “COMP”.

5. Results

5.1. Change of missing-data mechanism

Figure 2 presents the average MSE over all the training data sets for each of the
approaches considered. In green there is listwise deletion, those approaches that im-

15



plement some imputation in the data set (median-imputation, Breiman’s approach,
Ishioka’s approach and missForest) are in blue and those approaches that handle miss-
ing values directly in the construction of the trees (MIA and our proposal) are in red.
Listwise deletion (denoted as “NoRows”) generates the largest MSE. Hence, it could
be taken as a bound of the minimum expected performance for a method that attempts
to estimate the regression function with missing values. We observe that missForest
consistently generates estimators with the lowest MSE regardless of the missing-data
mechanism. On the other hand, we observe that our proposed method outperforms
MIA, Breiman’s approach and Ishioka’s approach and can achieve similar MSE as
missForest. For the DEPY data-missing mechanism, we can see that the algorithms
form two groups, keeping apart listwise deletion with the largest MSE, while the group
with the lowest average MSE is form by missForest and our proposal, the rest of the
algorithms here considered present a similar average MSE which stands somewhere
between listwise deletion and the second group. It is worthy to observe that even a
simple approach as imputing with the median can outperforms most of the methods
considered or can achieve a similar behavior in several missing-data mechanisms (see
MARI1, MAR2, MAR3, LOG).!

Analogously, Figure 3 presents the average bias over all the training data sets for
each of the approaches considered. As expected, listwise deletion generates the esti-
mators with more bias for all the mechanisms. In terms of bias, we observe that the
algorithms that impute the missing values before the construction of the random forest
tend to generate less biased results, while MIA consistently tends to generate the sec-
ond more biased estimators. For the MCAR case, all the methods considered tend to
be unbiased. On the other hand, in the case of the DEPY data-missing mechanism we
observe the biggest variability between the methods, and it becomes more evident how
the methods that perform some imputation previous to the construction of the random
forest tend to generate less biased estimators. We see that all the methods generate the
same kind of bias. That is, all of them underestimate or all of them overestimate the
regression function, just changing the magnitude of this bias. It is worthy to observe
that we can obtain unbiased estimators even for missing not at random mechanism,
in fact for the LOG case all the methods tend to generate unbiased estimators.

For the proportion of missing values considered, we observe little variability in
the average MSE and the average bias per method and per data-missing mechanism.
However, important differences appears when the rate of missing values increases, with
the variability in the average MSE and the average bias increasing with it (see Tables 1
to 4).

1Codes to reproduce our results can be found in: https://github.com/IrvingGomez/
RandomForestsSimulations, while examples on the use of these codes can be found in https:
//github.com/IrvingGomez/Random forests_with missing values.

16



Average MSE by Approach

]
= O

O Approach
[J Mo Rows

O O O O Median
/N erman

@ —+ 1shioka

X MissForest

! $ <v> MA
Proposal

X P>
X &Gk
b
®at>
RIKCB
>

X

COMP MCAR MAR1 MAR2 MAR3 MAR4 LOG DEPY
Mechanism

Figure 2. Average MSE of the testing data set for each approach and each missing-data mechanism.

Average Bias by Approach
08

Bias

0O
06
O
0.4 Approach
\v4 [ Mo Rows
o QO Median
Breiman
02 % O —+ isnioka
X MissForest
% K foxl)

LI . SR % % ................................... WAL

Pal

g3

02 ] &>
O

COMP MCAR MAR1 MAR2 MAR3 MAR4 LOG DEPY
Mechanism

Figure 3. Average bias of the testing data set for each approach and each missing-data mechanism.

5.2. Increasing the rate of missingness

Using the 100 training data sets with no missing values, we calculate the importance
of the variables with the R package randomForests, by percentage of increase in mean
squared error and by increase in node purity [5,22]. Figures 4 and 5 show the violin
plots for these measurements of importance. We can observe a consistently order for the
variables with missing values in both measures of importance, where X @ ig considered
more important than X and X®). Hence, we decided to change the fraction of

17



missingness in X to vary between 5%, 10%, 20%, 40%, 60%, 80%, 90% and 95%,
without changing the percentage of missingness in X and X®). In this part of the
study we do not consider anymore listwise deletion.

Importance of Variables by % of Increase in MSE Importance of Variables by Increase in Node Purity

=

900

AP “¢¢

X1 X2 X3 X4 X5 X1 X2

Increase in MSE (%)

=)

Increase in Node Purity

Figure 4. Importance variable accordingly to Figure 5. Importance variable accordingly to in-
percentage increase in MSE. Variables with miss- crease in node purity. Variables with missing val-
ing values are in wine, while variables with com- ues are in wine, while variables with complete val-
plete values are in blue. ues are in blue.

Figure 6 presents the average MSE varying the percentage of missing data and
considering the MAR1 mechanism, while Tables 1 and 2 show the average MSE
with its standard error. Analogous figures and tables for the MSE for all the
missing-data mechanisms can be found in the supplementary material at https:
//irvinggomez.com/publication/supplementary random forests_simulation/
Supplementary _RandomForestsSimulation.pdf.

Important differences between the performance of the methods become clear with
the increasing percentage of missingness. Especially when this value is over 60%, there
is an order on the performance of the methods. In those cases, missForest and our
proposal represent the methods with less MSE. Moreover, we can see the advantage
of searching for the best assignation when the percentage becomes really large with
our proposal outperforming all the other algorithms. While all the methods present a
similar MSE when the percentage of missing values is smaller than 40%. These same
phenomena are observed for the rest of the data-missing mechanisms (see the su-
plemmentary material). We observe constantly throughout the different data-missing
mechanisms that the methods with the worst performance are median-imputation and
Breiman’s approach, while missForest and our proposal being the methods with the
lowest MSE, and MIA and Ishioka’s approach lying somewhere between these two
groups. Once again, these differences become clear when the percentage of missing
values is beyond 60%. Furthermore, we can see in Tables 1 and 2 some deterioration
in all the methods when the percentage exceeds 60%, with our approach showing the
less MSE and less deterioration in terms of the standard error.

We consistently observe that our approach and missForest outperform the other
methods, regardless of the percentage of missing values, while there is no clear advan-
tage for the rest of the algorithms over the others. However, some differences between
the missing-data mechanisms are also reflected when we increase the percentage of
missing values. For the MCAR case, missForest and our approach present a MSE be-

18



tween 7.95 and 8.19 when the percentage of missingness is 90%. On the other hand,
for the same percentage of missing values and the same algorithms we observe a dete-
rioration in terms of the MSE which varies between 9.05 and 12.86 when we consider
the DEPY scenario.

Similarly, Figure 7 presents the average bias varying the percentage of missing data
and considering the MAR1 mechanism, while Tables 3 and 4 show the average bias
with its standard error. When we include the bias in the study, the differences between
methods and missing-data mechanisms become more evident. We observe that this
missing-data mechanism introduced a bias in the methods. Analogous figures and ta-
bles for the bias for all the missing-data mechanisms can be found in the supplementary
material. We observe consistently throughout all the data-missing mechanisms that
MIA and median-imputation generate the most biased estimators while Breiman’s ap-
proach tends to generates the less biased. These differences between methods become
clear once the rate of missing data exceeds the 60%.

Test MSE Varying the Missing Rate in X4 for the MAR1 Mechanism

&
A
=14
+
iy
12
A é Approach
A A Median
~+ Breiman
¥ <
10 3 Ishicka
N < MissForest
+
= 7 OMA
i B Proposal
&
& 7
b3
8 * &
& ¥
4 ! I
6 @
0% 20% 40% 60% 80% 100%
Missing Rate

Figure 6. Average MSE for the testing data set for each percentage of missingness, considering the MAR1
mechanism.

0% 5% 10% 20% 40%

Median 6.06 £0.06 | 6.54 £0.06 | 6.57 £0.05 | 6.78 =0.06 | 7.35 & 0.07

Breiman | 6.06 +0.06 | 6.59 +0.06 | 6.64 +£0.06 | 6.75 £+ 0.06 | 7.10 + 0.06

Ishioka 6.06 = 0.06 | 6.49 £0.06 | 6.56 +£0.06 | 6.72 4+ 0.06 | 7.12 4+ 0.07

MissForest | 6.06 +£0.06 | 6.41 +0.06 | 6.47 4+ 0.06 | 6.49 = 0.06 | 6.64 £+ 0.06

MIA 6.06 +0.06 | 6.41 £0.06 | 6.47 +0.06 | 6.63 + 0.06 | 6.89 4+ 0.07

Proposal | 6.06 +0.06 | 6.53 + 0.06 | 6.56 =0.06 | 6.68 +0.06 | 6.97 £+ 0.06
Table 1. Average mean squared error and its standard error for the different methods, considering the MAR1

case.




60% 80% 90% 95%
Median 8.51£0.09 | 10.65£0.15 | 12.24 +0.21 | 14.17 £ 0.28
Breiman | 7.90+0.10 | 9.45+£0.13 | 11.40+0.26 | 13.70 £ 0.34
Ishioka 7.75£0.08 | 9.06£0.12 | 10.23£0.13 | 11.39+0.20
MissForest | 6.97 £0.06 | 7.80£0.09 | 8.70+0.14 | 10.32+0.35
MIA 7.424+0.08 | 8.46+0.11 | 9.83+0.14 | 11.13+0.20
Proposal | 7.324+0.07 | 8.114+0.08 | 8.66 £0.08 | 9.22+0.11

Table 2.
the MARI case.

Test Bias Varying the Missing Rate in X4 for the MAR1 Mechanism

]
@ 000 [}

#
&

-0.50

075

e

v

20%

+

& ==

X

il o

.
X
B
A
V.

+
+
<
=
X%
el
AN
Py
7
v
100%
Missing Rate

(Cont.) Average mean squared error and its standard error for the different methods, considering

Approach

A Median

—~+ Breiman

- Ishioka

< MissForest
7 WA

R Proposal

Figure 7. Average bias for the testing data set for each percentage of missingness, considering the MAR1

mechanism.

0% 5% 10% 20% 40%
Median 0.00£0.02 | —0.06 £0.02 | —0.08 £0.02 | —0.09 £0.02 | —0.20 £ 0.03
Breiman | 0.00£0.02 | —0.04 +£0.02 | —0.04 £0.02 | —0.05 £ 0.03 | —0.09 £ 0.03
Ishioka 0.00£0.02 | —0.04 £0.02 | —0.05£0.02 | —0.07£0.02 | —0.16 £0.03
MissForest | 0.00 £0.02 | —0.05 £ 0.02 | —0.06 £0.02 | —0.07 £0.02 | —0.13 £ 0.02
MIA 0.00£0.02 | —0.08 £0.02 | —0.124+0.02 | —0.14 £ 0.03 | —0.26 £ 0.03
Proposal | 0.00 +0.02 | —0.08 £0.02 | —0.09 +0.02 | —0.10 £0.02 | —0.20 £ 0.03

Table 3. Average bias and its standard error for the different methods, considering the MAR1 case.

5.3. Prediction of new observations with missing entries

A challenge in machine learning is to compute a solution or a prediction to a certain
problem when the given information is somewhat incomplete. In our specific context,
our proposal do not have to rely on imputations of the missing entries to be able
to calculate a prediction for a new data point. The fact that most of the existing
techniques use imputation to construct the random forest tend to provide a prediction
that is highly dependent on those imputations. In the following, we explain a way to
perform the prediction phase without having to impute the missing entries of the new

20




60% 80% 90% 95%
Median —0.35+0.03 | —0.67£0.03 | —0.73£0.05 | —0.82 £0.04
Breiman | —0.12+0.03 | —0.13 £0.03 | —0.14 £0.03 | —0.21 £0.05
Ishioka —-0.29+0.03 | —0.54£0.03 | —0.59+£0.05 | —0.59 £ 0.05
MissForest | —0.22 +0.03 | —0.49 £0.04 | —0.51 £ 0.05 | —0.62 £ 0.07
MIA —0.41£0.03 | =0.77£0.03 | —0.87 £0.05 | —0.94 £ 0.05
Proposal | —0.32+0.03 | —0.42+0.04 | —0.56 £0.03 | —0.57 £ 0.03

Table 4. (Cont.) Average bias and its standard error for the different methods, considering the MARL1 case.

data point.

At this stage, we assume that the training phase is finished and that one have access
to the random forest with the assignations associated to each tree. The prediction is
computed tree by tree and is averaged over the different trees in the random forest. A
tree prediction is performed looking for a (pseudo-random) final cell in the tree that
is the most likely to contain the query point X. This is done in a recursive manner
by going down in the tree following a procedure that we describe now. Assume that
we are in the cell A which has a cut (h, z) that splits it into A, and Agr and that the
assignation vector associated to that cut is given by w. If the direction h is observed
then, as usual, X is assigned to the left if X" <z, otherwise it is assigned to the
right. Let us now assume that the direction h is missing, in this case we need to
look at the vector w to assign the query point. Once again, let N be the number of
points with a missing value in the direction h let Np (resp. Ng = N — Np) be the
number of such points assigned to the left (right) node. At this step, if N = 0 (when
no missing values where observed in the direction A in the cell during the training
phase) we stop the descent and predict the value of Y by its mean value in the cell A.
Otherwise, N # 0 and we can compute p;, = N1,/N (resp. pr = Nr/N) the empirical
probability for a missing observation to belong to the left (resp. right) node, given
that it belongs to cell A. The next cell is, then, stochastically selected to the left or
to the right with respective probabilities py, and pr. Our algorithm keeps track of the
assignations w at each step so that computing the probabilities p;, and pg is direct.
We can think of the same procedure for the other random forest techniques that
do perform a certain kind of assignation. For example, MIA algorithm is the most
suited for a comparable treatment for incomplete data points in the testing phase.
Nevertheless, the “assignation information” is not accessible in the existing codes for
MIA. For the case of the algorithms that do perform imputation of the missing values,
it is not clear how an imputation has to be done for the testing phase. As discussed
in [1], these algorithms are really dependent on the way the imputation is performed
and then no theoretical guaranties are known for their consistency. In the following,
we give some simulations of this testing phase letting the proportion of missing values
to vary.

In the training phase:

e For each data set and each of the 7 missing-data mechanisms (MCAR, MARI,
MAR2, MAR3, MAR4, LOG y DEPY) we introduce missing values in the vari-
ables X, X3) and X@. The proportion of missing values are 20% for X1,
10% for X and 60% for the variable X®).

e The random forests are constructed following the lines of Section 4.2

For the testing phase:

21



e For each missing-data mechanism, we let the percentage of missing values for
X® to vary from 0% to 95% and let the other two proportions of missing values
for XM and X®) unchanged (at 20% and 10%, resp.)

e The graphics in Figure 8 represent the MSE on those 2000 observations where
100 random forests are computed for each missing-data mechanism.

MSE varying the Missing Rate in X4 at Testing Phase

MCAR MAR1 MAR2 MAR3

MSE

MAR4 LoG DEPY

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Missing Rate

Figure 8. We compute the MSE over a testing set of 2000 data points, the proportion of missing values for
X @) varies from 0% to 95%.

Using this technique to assign a new observation with a pseudo-random approach
during the prediction phase, we can observe a linear behavior in the estimation of
the MSE trough all the data-missing mechanisms, which shows a robust approach to
the mechanism that has generated the missing values. Moreover, we do not observe
important differences between the values of the MSE throughout the mechanisms. We
encourage the incorporation of this technique in other algorithms, or clear statements
on how to deal with missing values during a prediction phase, allowing the comparison
of the distinct algorithms beyond the training phase.

6. Discussion and conclusions

We developed a simulation study comparing a new proposal with other 6 distinct ap-
proaches based on random forests to perform regression with missing entries. Four
of the algorithms impute the missing values to create completed data sets and then
construct random forests in the usual way. Two algorithms belonging to this group
rely on the computation of the proximity matrix [5,6] and improve the imputations
iteratively. The third algorithm imputes the missing values with the median of the
observations. The last algorithm of this group corresponds to missForest [7] which
performs imputation through the implementation of random forests where the im-
putation of the missing values is treated as a regression problem by itself. We also
considered MIA [9] which, similar to our proposed algorithm, handle missing values
directly in the construction of the trees. Finally, as a simple benchmark we considered
listwise deletion.

22



For the simulation study we considered the so-called “friedmanl” regression func-
tion [19], which has been used in previous simulation studies [12,14,19,24,25], and
considered 7 different mechanisms to introduce missing values in the data sets; one
being missing completely at random, denoted as MCAR; five of these mechanisms
being missing at random, denoted as MAR1, MAR2, MAR3, MAR4, and DEPY; and
the last mechanism being missing not at random, denoted as LOG.

With no surprise, listwise deletion was the approach with the worst performance,
this method should be avoided unless the percentage of observations with missing
values is so low that they can be deleted without a severe harmful. For the rest of
the algorithms, we observed differences between distinct techniques. These differences
become more evident when the percentage of missing values increases, especially when
it is over 60%, while these differences are diluted for small values of this percentage
(less than 40%). Moreover, the behavior of the methods appear to be dependent on
the missing-data mechanism. Intensive computer algorithms, as missForest and our
approach, seem to perform particularly well for large percentage of missing values.

On the other hand, we see that simple techniques as median-imputation have similar
performance to more complicated algorithms when the percentage of missing values
is under 40% which makes its use sufficient in practice for few missing value contexts.
Furthermore, when the percentage of missing values is low, we observed little vari-
ability in the average MSE and the average bias for the estimators obtained for all
the methods considered and through all the data-missing mechanisms. However, when
this percentage increases, especially over 60%, we observed a deterioration in the es-
timations, not only in the increase of the MSE and with more biased estimators, but
also with more variability which is reflected in larger values for the standard error.

Since the patterns and differences between the methods and data-missing mecha-
nisms become more evident with the increase of the missing values, we encourage the
incorporation of a relatively high ratio of missingness for studies that focus on the
analysis of algorithms to handle missing values. When this percentage becomes small
(say 20% or less), even a simple technique as median-imputation can achieve similar
results to more complicated algorithms, which become relevant with a high percentage
of missing values.

We presented an extensive simulation study; introducing several data-missing mech-
anisms; varying the percentage of missingness from very low values (5%) to very large
values (95%); and considering distinct methods, from simple approaches as listwise
deletion and median-imputation to state-of-the-art algorithms that explode the com-
putational power. However, we consider that more studies, both theoretical and em-
pirical, are still needed. For sake of clarity and for a reasonably comprehensive study,
we have limited the analysis in this article to simulated data, but also encourage the
use of publicly available data sets with artificially added missing data.

Due to the variability find in the codes of the different techniques, and the calcu-
lation of some by-products (like the proximity matrix or measures of feature impor-
tance), that might increase both the execution time and the computation resources,
we found challenging to analyze the algorithms through computational metrics. There-
fore, we considered as an alternative to study and compare the algorithms through
their theoretical complexity and the empirical analysis of simulated data, allowing
the comparison of the results with the real regression function, and where we have
access to the mechanisms that generated the missing values. Thus, we studied the
complexity of our proposal in Section 3.2 and show in Section 3.3 how a bisection
technique can be performed to find the best assignation of the missing values. With
these simplifications, we proved that the complexity of the algorithm is comparable to

23



the MIA algorithm complexity up to a logarithmic factor, making possible to apply
the algorithm for real applications.

Finally, in Section 5.3 we explain a process that allows the prediction of a new
observation with missing entries. This procedure uses the assignation of the missing
values during the training phase to estimate the probabilities of belonging to each cell.
Hence, the new observation can be assigned stochastically to the cells of each tree
using these probabilities. In the end, the prediction of the random forest is simply the
average of the prediction of each tree. We observed through the simulation study that
this technique seems to be robust to the missing-data mechanism and that it could be
applied even for data sets with several missing values. Moreover, it can be applied with
any other technique that assigns the missing observations, as long as the information
of these assignations is kept. We also encourage to consider the prediction step and
not only the training phase in studies dealing with missing values. Up to now, several
approaches do not specify how to predict a new observation where only a part of the
predictor variables are available, this might be challenging specially for algorithms
that use the response to impute the missing entries. This step has a huge importance
and should not be avoided, since the same mechanism that generated missing values
during the training step could operate during the prediction phase.

References

[1] Gémez-Méndez I, Joly E. On the consistency of a random forest algorithm in the presence
of missing entries. arXiv preprint arXiv:201105433. 2020;.

[2] Biau G, Scornet E. A random forest guided tour. Test. 2016;25(2):197-227.

[3] Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for dna
microarrays. Bioinformatics. 2001;17(6):520-525.

[4] Van Buuren S, Brand JP, Groothuis-Oudshoorn CG, et al. Fully conditional specifica-
tion in multivariate imputation. Journal of statistical computation and simulation. 2006;
76(12):1049-1064.

[5] Breiman L. Setting up, using, and understanding random forests v4.0 ; 77?7 Available
from: https://wuw.stat.berkeley.edu/~breiman/Using random forests_v4.0.pdf.

[6] Ishioka T. Imputation of missing values for unsupervised data using the proximity in
random forests. In: International Conference on Mobile, Hybrid, and On-line Learning.
Nice; 2013. p. 30-36.

[7] Stekhoven DJ, Bithlmann P. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics. 2011;28(1):112-118.

[8] Breiman L, Friedman JH, Stone C, et al. Classification and regression trees. Chapman
and Hall/CRC; 1984.

[9] Twala B, Jones M, Hand DJ. Good methods for coping with missing data in decision
trees. Pattern Recognition Letters. 2008;29(7):950-956.

[10] Feelders A. Handling missing data in trees: surrogate splits or statistical imputation? In:
European Conference on Principles of Data Mining and Knowledge Discovery; Springer;
1999. p. 329-334.

[11] Farhangfar A, Kurgan L, Dy J. Impact of imputation of missing values on classification
error for discrete data. Pattern Recognition. 2008;41(12):3692-3705.

[12] Rieger A, Hothorn T, Strobl C. Random forests with missing values in the covariates.
Technical report. 2010;Available from: http://epub.ub.uni-muenchen.de/11481.

[13] Hapfelmeier A, Hothorn T, Ulm K. Recursive partitioning on incomplete data using surro-
gate decisions and multiple imputation. Computational Statistics & Data Analysis. 2012;
56(6):1552-1565.

[14] Josse J, Prost N, Scornet E, et al. On the consistency of supervised learning with missing

24



values. arXiv preprint arXiv:190206931. 2019;.

Schafer JL. Analysis of incomplete multivariate data. CRC press; 1997.

Schafer JL, Olsen MK. Multiple imputation for multivariate missing-data problems: A
data analyst’s perspective. Multivariate behavioral research. 1998;33(4):545-571.
Quinlan JR. C4.5: Programs for machine learning. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.; 1993.

Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: A conditional inference
framework. Journal of Computational and Graphical statistics. 2006;15(3):651-674.
Friedman JH, et al. Multivariate adaptive regression splines. The annals of statistics.
1991;19(1):1-67.

Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining; 2016.
p. 785-794.

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society: Series B (Methodological). 1977;
39(1):1-22.

Breiman L. Random forests. Machine learning. 2001;45(1):5-32.

Rubin DB. Inference and missing data. Biometrika. 1976;63(3):581-592.

Breiman L. Bagging predictors. Machine learning. 1996;24(2):123-140.

Friedberg R, Tibshirani J, Athey S, et al. Local linear forests. Journal of Computational
and Graphical Statistics. 2020;:1-15.

25



